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It is shown that Reed-Solomon (RS) codes can be encoded and decoded by
using a fast Fourier transform (FFT) algorithm over finite fields. A Fourier-like
transform is defined over finite fields of type Ir, (*\/2), where F, is a Fermat prime
for n < 4. The field Ir,(*\/2) is used to extend the length of the original Fermat
number transforms by a factor of 8. The arithmetic utilized to perform these
transforms over the field of type I ( #\/2) requires only integer additions, circular
shifts and a minimum number of integer multiplications by powers of \/2. The
computing time of this transform encoder-decoder for RS codes is less than the
time of the standard method for RS codes.

More generally, the field GF(q) is also considered, where q is a prime of the
form K X 2" + 1 and K and n are integers. GF(q) can be used to decode very long
RS codes by an efficient FFT algorithm with an improvement in the number of
symbols. The arithmetic needed for these more general transforms requires only
slightly modified binary integer additions and multiplications.

Transforms can be defined also over the Galois field GF(q*), a finite field analo-
gous to the complex number field, where q = 2? — 1 is a Mersenne prime. The
arithmetic needed for this case requires integer complex multiplications mod q
and additions mod q.

It is shown in this paper that a radix-8 FFT algorithm over GF(q*) can be
utilized to encode and decode very long RS codes with a large number of symbols.
For eight symbols in GF(q*), this transform over GF(q%) can be made simpler
than any other known number theoretic transform with a similar capability. Of
special interest is the decoding of a 16-tuple RS code with four errors.
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I. Introduction

Recently Gore (Ref. 1) extended Mandelbaum’s meth-
ods (Ref. 2) for decoding Reed-Solomon (RS) codes (Ref.
3). He proposed the usage of a finite field transform over
GF(g"), where g is a prime and n is an integer, for de-
coding RS codes. Michelson (Ref. 4) has implemented
Mandelbaum’s algorithm and showed that the decoder,
using the transform over GF(q"), is faster than a more
standard decoder (Ref. 5). The first disadvantage of the
transform method over GF(q") is that the transform
length is an odd number, so that the most efficient FFT
algorithm cannot be used to yield a fast transform de-
coder. The second disadvantage is that the arithmetic
required to perform these transforms over GF(g") still
requires a substantial number of multiplications in
GF(g™). The arithmetic used to implement this transform
was performed in the extended field, GF(q").

Schonhage and Strassen (Ref. 8) defined Fourier-like

transforms over the ring of integers modulo the Fermat
number 22" + 1 to yield convolutions for performing fast

integer multiplications, Rader (Ref. 7) proposed trans-
forms over rings of integers modulo both Mersenne and
Fermat numbers that can be used to compute error-free
convolutions of real integer sequences.

Agarwal and Burrus (Refs. 8 and 9) extended Rader’s
Fermat number theoretic transform by using the genera-
tor a = /2 for the transform, rather than a = 2. In this
case the usual FFT algorithm can be used to calculate
transforms with as many as 2" +* points of integer data.
This transform was shown to be over the residue classes
of quadratic integers I (*\/2), where \/2 is a root of
x* — 2 =0 and I, denotes the set of integers mod F,
(Ref. 10).

McClellan (Ref. 11) has realized recently the hardware
for the Fermat number theoretic transforms. He showed
that the arithmetic used to perform these transforms re-
quires only integer additions and circular shifts. The
primary advantage of the Rader transform is that multi-
plications by powers of two are performed by simple bit
rotations. Of course, this advantage must be weighed
against the difficulty of the numeric constraints relating
word length, length of sequence d, and the compositeness
of d, imposed by the choices of Mersenne prime and
Fermat numbers.

Recently, the authors (Refs. 12 and 13) extended the
number theoretic transform (NTT) to a complex integer
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field by taking transforms over a Galois field GF(g?),
where g is a Mersenne prime. This field is analogous to
the field of complex numbers. Such a complex number
theoretic transform (CNT) offers more choices in trans-
form length than can be obtained by other methods for
the computing fast transform of the complex numbers.
The arithmetic used to perform this transform requires
integer complex multiplications and additions, mod ¢. In
Ref. 14 it was shown that the binary arithmetic in GF(g*)
is simpler than complex number arithmetic. For example
the components of the eighth roots of unity in GF(q?) are
fixed powers of 2. This latter fact was used to develop a
fast radix-8 FFT algorithm over GF(g*). The transforms
over GF(g?) were extended also to operate over the direct
sum of Galois fields (Ref. 15). Such transforms can be
used to compute transforms with improved dynamic
range.

It was proposed (Ref. 16) also that number theoretic
transforms could be defined in the Galois field GF(q),
where the prime ¢ was of form g = k X 2" + 1, where k
and n are integers. For this class of primes, the FFT
algorithm can be utilized to realize transforms of integers
that are not quite as fast as the Fermat number trans-
forms. However, such transforms offer a substantial
variety of transform and word lengths beyond what is
possible with the Fermat transforms of Schonhage,
Strassen, and Rader.

The arithmetic used to perfom the FFT over GF(q)
requires only slightly modified binary integer additions
and multiplications. It should be noted that in Ref. 16, a
method to perform arithmetic modulo kX 2*+1 is
developed specifically for the case k = 3. It was shown
(Ref. 17) that a radix-2 FFT over GF(q) is slightly faster
than the efficient algorithm (Ref. 18) for the conventional
FFT of real data when programmed on a PDP-10 com-
puter. This speed could be considerably improved on
computer hardware appropriately specialized to perform
modulo g arithmetic.

Recently, Justesen (Ref. 19) proposed that transforms
over fields of Fermat primes can be used to encode and
decode RS codes. Since V2 €GF(F,) for n =2, 3, 4 (see
Ref. 10) is an element of order 27** in GF(F,), the RS
code of as many as 2™? symbols can be generated in
GF(F,). Hence, using an argument similar to Gore’s
transform decoding method, mentioned above, the
Fermat number theoretic transform is used to decode RS
codes. Since the arithmetic in this new transform decoder
is performed in GF(F,), such a number theoretic trans-
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form decoder for RS codes can handle as many as 2"+
symbols for n = 2, 3, 4. Encoding, and decoding can be
accomplished faster and simpler than any other known
standard decoder for RS codes of the same symbol range.

To treat longer RS codes in GF(F,), the transform is
extended here to the finite field of type Ir (*\/2), where
53/2is a root of the polynomial P(x) = x* — 2 over GF(F,)
and Ir, denotes the set of integers modulo F,. If F, is
a Fermat prime, then I = GF(F,). The field I (*\/?) is
obtained by taking the residue classes of polynomials
modulo P(x). That is,

I, (*v2) = {a + D(*V2) + c(*V2)* + d(*\/2)*
F el VR) + VDS + VR
+ h(*\/2)"|a, b, ¢, d, e,f, g, heGF(F,)}

It will be shown that 2 is an octadic residue of a
Fermat prime F, for n = 3,4. Thus, I (*\/2) is a field of
F, elements isomorphic to GF(F,). The transform over
Ir (*V2) extends the length of Rader’s original Fermat
number theoretic transform by a factor of 8. The arith-
metic used to perform this transform requires only inte-
ger additions, circular shifts and a minimum number of
integer multiplications by powers of %\/2.

To decode very long RS codes over GF(F,) (from
Refs. 9 and 10), one can use the fact that 3 is a primitive
element in GF(2*" + 1). Thus a FFT over GF(F,) can be
used to decode a 22"-tuple RS code. The arithmetic used
to perform this transform requires integer multiplications
by powers of 3 and integer additions mod F,.

Since the Fermat primes F, exist only for n <4, the
dynamic range of the transforms associated with these
primes is severely limited. To remedy this it may be
possible to use transforms over the direct sum of Galois
fields, GF(F,) to decode RS codes with an improved
number of symbols.

A special case of the radix-8 FFT over GF(q*) where
g =2 — 1 is a Mersenne prime is developed in some
detail to encode and decode a very long nonsystematic
RS code with a large number of symbols. Recall that the
8th root of unity in GF(q?) is ==2-1/2 (1 + i), where p is
a prime. Hence, the arithmetic used to perform 8-point
transforms requires only circular shifts and additions.
This transform is used to decode a 16-tuple error cor-
recting RS code faster and simpler than any other similar
code.
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Il. A Transform Over I, (®\/2) Where F, is a
Fermat Prime '

Let q be a prime and let GF(g™*) be the Galois field and
suppose that integer d divides g* — 1. Also let the ele-
ment yeGF(g") generate the cyclic subgroup of d ele-
ments, G, in the multiplicative group of GF(g"). Then,
by Ref. 12, a transform over this subgroup Gs can be
defined by

d-1
Ax =3 a*" for0 < K<d-1 (1a)
n=0

where d divides ¢"—1 and a.eGF(q") for n=

0,1,2,---,d — 1 and the inverse of transform of Ay is
d-1 i
a, = (d) 3 Axy™™ (1b)
K=0

where (d) denotes the residue of d mod g, and (d)™ is the
inverse of (d). In the present case, attention is restricted
to n =1, Thus, the transform over Gu,cGF(q) can be
defined by

d-1

Ax = Y ay ™ for0<K<d—1 (2a)
n=0

where d|q — 1 and a,, Ax¢GF(q) and the inverse trans-
form of Ay still holds. That is,

d-1
a, = (d)* D Axy ™" for0<n<d~1 (2b)
K=0
where (d) denotes the residue of d mod ¢ and (d)-* is the
inverse of (d).

It is shown in the Appendix that 2 is an octadic residue
of a Fermat prime F,. As a consequence, %\/2 is an ele-
ment of GF(F,). Thus, by the same procedure used in the
proof of theorem 6 of Ref. 21, Ir (*\/2) for n = 3,4 is
isomorphic to GF(F,).

If g=F, is a Fermat Prime, the above transform
(Eq. (2)) can be defined in GF(F,)=I; (*/2) for n=3,4.
Since Ir, (*V/2) is isomorphic to GF(F,) and (3y/2)*"*=—1
mod F,, then by the theorem 1 of Ref. 12, y = /2, is an
element of order 2"** in Ir (*\/2). Thus the FFT over
Ir, (*\/2) can be defined to compute the transform of a
sequence of as many as d = n + 4 points of integer data.
It should be noted that this fact extends the length of
Rader’s original Fermat number theoretic transform by a
factor of 8.
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Since y = #\/2 GF(F,) is an element of order 27, it is
well known (see for example Ref. 12) that the FFT algo-
rithm over GF(F,) is composed of d =n 4 4 stages of
computation, The first d — 3 stages require only multipli-
cations by the powers of 2, i.e., circular shift. By Ref. 9,
V2 =232 — 22** Thus, the (d — 2)-st stage requires
integer multiplications by powers of %\/2, i.e. circular
shifts. Only the last two stages require integer multiplica-
tions by powers of /2. Hence the number of arithmetic
operations used to perform this transform are d-logd
integer additions ((d—3)-logd +2logd)=(d+1)logd
circular shifts and 2-logd integer multiplications by
powers of #\/2. This implies that the FFT over Ir (*\/2)
for n = 3,4 is faster and simpler than any other number
theoretic transforms of the same transform length and
dynamic range.

Ill. Fast Decoding of Systematic Reed-Solomon
Codes Using the Transform Over I, (5\/2)

It was shown in the previous section that the field of
type Ir (*\/2) is isomorphic to GF(F,) for n = 3,4 and
the o = #\/2 eGF(F,) is an element of order 27**. A sys-
tematic Reed-Solomon code can be specified in GF(F,)
as follows.

Assume the code length for the RS code is N = 2n++
Let a codeword be represented by f(x), a polynomial of

degree N — 1 over GF(F,). The generator polynomial of
f(x) is defined as

where d = 28 < N = 24 o = 8/, o2 = (5\/2), -+-, 0% =
(3/2)¢ are the roots of g(x) in GF(F,). The resultant RS
code with N symbols, which is a multiple of the generator
polynomial, is composed of d — 1 parity check symbols
and n — (d — 1) information symbols. d is the minimum
distance of the RS code. If ¢ is the number of errors the
code will correct, then for an RS code d = 2t + 1.

Suppose that the code f(x) =f, + fix + - + fy_x¥
is transmitted over a noisy channel. The received code
R(x) = yo + yax 4+ vyox* + -+ + yy2¥ is composed of
the original code with the addition of possible errors, i.e.,

(%) = f(x) + e(x)

where e(x) = e, + ex + ex* + -+ + ey.;x¥ is the error
polynomial.
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Upon receiving the message y(x), one may decode the
message symbols by first using the FFT over Ir (5/2).
The transform is taken over the received N-tuple message
(Yory1, ' *» yn-1), the coeflicients of the polynomial y(x).
This transform is

Sk =3 yal*\/2)En for K=01, --,N—1
n=0

N-—

-

Ng]

(fa + ea) CV2)*

=
I
=3

-

S (vR) + > eV

n

FK+EK

[
™

H
=)

Since f(x) is a multiple of g(x), f(a’) =0 for i=
1,2, ---,d — 1. Hence,

S = Ex = (VD)) = 3. ealty D

n=0

N-1

= Zen((s\/@)n)K

n=0

for K=12 ---.d—1
(3)

Let Y; and X; be the ith error magnitude and the ith
error location, respectively. Then the syndrome in Eq. (3)
becomes

t
SK = E[( = ZYIX?

i=1

for K=12,-,d—1
4)

The error locator polynomial o(x) is defined as usual by

o(x) = H I—=Xx)=1—ox + o2+ -+ (—1)louxt

=1

where ¢; are the elementary symmetric functions.
It follows that

O‘(Xi—1> =0=1- O"IXi—l + O'ZXfZ + - °y + (_l)tUtXi—t
fori=12 -, ¢

Multiplying the above equation by Y;X;’*!, one gets
Y,iXij”'— O-IY,iXij*'t“l + JgY@Xi”t—z + - " + ( - 1)tUtYiX«;j+t_t

Summing on i for i = 1,2, -+, ¢, then

i t t
SYiXit = o LY. X 4 e (= Dl Y X =0

i=1 i=1 i=1
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Using Eq. (4), we have

Sivt — 1 Sjuta + o F(—1)10,S; =0 forj <t
(5)
and
Eivt —aEjpen + -+ (—1D0E; =0 forj>¢
(6)

If $=E,S,=E, -, S¢, = E4, are known, the o;
for i=1,2 ---,t in Eq. (5) can be calculated by using
Berlekamp’s (Ref. 22) iterative algorithm. If &; is known,
Eq. (6) is then used to obtain E, Eq Eg., -, Ex,, and
the transform of the N-tuple error pattern, ie,
(Eo, E\, Eo, -+, Ey.,) is obtained. Thus, the N-tuple error
pattern (e,, i, -*,ey,) is found by taking the inverse
transform over Ipn(g\/é> of Ex for K=0,1,--- N —1.
Finally, the original N-tuple symbols code can be com-
puted by subtracting e, from received code v,.

To recapitulate, the decoding of systematic Reed-
Solomon codes using the transform over Ip, ( £\/2), is com-
posed of the following three steps:

(1) Compute the transform over Ir (%/2) = GF(F,) for
n = 3,4 of the received code N-tuple, ie.,

N-1

SI\’ = Z“/”(X"k
H-0
where y,eGF(F,) and o = #\/2eGF(F,) is an ele-
ment of order N == 21+,

(2) Use Berlekamp’s iterative algorithm (Refs. 19 and
22) to determine o; from the known §; = E; for
i=1,2 - tand j=1,2,---,d — 1. Then compute
the remaining E;.

—
[¥]
=

Compute the inverse of the transform over I (%1/2)
of (Sx — Ex) to obtain the corrected code.

An advantage of this decoding algorithm over other
methods is that a FFT over GF(F,) can be used to com-
pute the syndromes and error magnitudes. Also the
Berlekamp’s algorithm can be performed in the arith-
metic of GF(F,). The arithmetic used to perform the
FFT over GF(F,) only requires integer additions, circular
shifts, and a minimum number of multiplications; thus,
such a Fermat number theoretic transform decoder for
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an RS code of as many as 2" symbols can be accom-
plished faster and simpler than other RS decoders. Since
this new transform decoding algorithm is independent of
code rate, it is more efficient for correcting a large num-
ber of errors in an RS code. The FFT over GF(F,)
becomes more efficient for the longer RS codes.

A disadvantage of this decoding method is that the
Fermat primes F, exist only for n <4 and the lengths
and dynamic ranges of the transforms associated with
these primes are often severly limited. To remedy this
it is well known (Ref. 9) that such transforms can be
defined over rings of integers modulo a Fermat numbers
F,=2"+ 1forn =5, 6, ie., Ir,. The syndromes can be
evaluated by using transforms over this ring. If one
knows the S;, the inverse element in the ring is needed to
evaluate the o;. However, the inverse of an element in
this resulting ring does not exist unless (a, F,) = 1. For
this reason, transforms over Ir cannot be used directly
to decode RS codes.

It should be pointed out that a word length of 2» + 1
bits is required to represent a number in GF(F,). How-
ever, the word length in the transmitted word is often a
multiple 4 bits. Thus, the values of the symbols in GF(F,)
cannot be represented easily as a 2* bit word. To remedy
this, suppose the information symbols are represented in
the range from 0 to 2*" — 1. After encoding the informa-
tion symbols, the parity check symbols may occur in the
range between 0 and 2*°. If 2*" is observed as a parity
check symbol, deliberately change this value to 0, now
an error. The transform decoder will correct this error
automatically.

A simple example of the above decoding procedure
for an RS code in GF(F,) is now presented.

Example. Let GF(2¥ + 1) be the field of integers
modulo the Fermat prime F, = 17. We consider a 2-error
correcting 8-tuple RS code in GF(17).

Since 2> = —1 mod 17, by (Ref. 12, theorem 1) a = 2
is an element of order 8 in GF(17). The cyclic subgroup
of § elements with generator a = 2 in GF (17) follows:

a=2

o = 2% =

o =2%=8§
ot =2+ = —1
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a®=2=15
a®t=2=13
a'=2"=9
at =28 =1

The block length of the RS code is N = 8. It can correct
at most ¢ = 2 errors. This implies that the minimum dis-
tance of the code is d = 2¢ + 1 = 5. Then the informa-
tion symbols are N—(d—1) =8 - (6—-1)=4. The
generator polynomial is defined as

d~

o1

CRESEDNCEEY

i-1

g(x) =

1=

= x* 4 4x% + 8x2 + 9x + 4

~

Assume the information symbols are 1,2, 3, 2¢GF(17), i.e.,
I(x) = 1x" + 2x° + 3x° + 2x*. Recall that the code word
is a multiple of g(x). By the division algorithm, one gets

I(x) = q(x)g(x) + R(x)

where R(x) is the remainder of polynomial of degree less
than the degree of g(x). It follows that

f(x) = I(x) — R(x) = q(x)g(x)
Hence the encoding of I{x) is the polynomial

f(x) = 5 + 2x 4 12x* + 1543 ++ 2x* + 3x° + 2x° + a7
=(5,2,12,15,2,3,2,1)

Suppose that two errors occur in the received word, c.g.,

y(x) = 3+ 2x + 9x? + 15x% + 2x* + 1x® + 2x° 4 1x7

- ('Y% Y1 Y25 Y3, Va5 Vs V6 77)
(5,212 —3,15,2,3— 2,2, 1)

il

Then the error pattern e(x) is

e(x) = y(x) — f(x)
=04+0x'—3x24+0x>+0-2*—2x°+0ex® 4+ 0-x"
= (eo, €1, €3, €s, €4, €5, €, €7)

=(0,0,14,0,0,15,0,0)
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The syndrome can be calculated, using an FFT over
GF(F,). That is,

8-1
SA = EK = '}’712”[(
n=0
8-1
= D {fu + e,)2"%
n=0
81 8-1
— Z fu2nE + Z e, 2mK
- F}( + EK
Since
S-1
> 2K =0 forK=1,2,3,4
n=0
then

Sk =Ex =y(x) =e(x) = 3 e, 2% = 3 Y XF

n=

for K =1,2,3,4
Hence,
S.=e2) =E, = —3:2:—~2:29= 8§
S = o) = By = —8(2%)" — 2(2%) = -5
Sy = e(2¥) = E; = —3(29) — 2(28)° = 11
S, =e(2*) =E, = —3(2})? — 2(2)° = —1

The error locator polynomial o(x) is

[T - Xx) =1~ Xa)

14
i=1 1=}

a(x) =
=1 — (X, + Xo)x + X, Xox?
=1—ox+ x>

where
o1 = Xy + Xp, 00 = XX,

It follows that

oXi)=0=1— 6, X7" + 0. X} fori=12
Multiplying by Y; X+,
Y. X2 — oY X+ Y X2 = 0 fori=12
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Summing on i for i = 1,2, one has

ZYX”Z — a4 X:YXJ+1 +0>ZY X] =0

i=1

ie.,
Sj+2 - (T]S]'+1 -+ UQSj = 0, for 7' S 2 (7)
and
Ej+2 - O'lEjH -+ (rzEj = 0 fOI' ] > 2 (8)
It follows from Eq. (7) that forj = 1,2
S; — .S, +6,85, =0
S, — aS;+ 0.5, =0
or
—50, + 6.8 =11 mod 17 (9a)
1lo; + 0.5=1mod 17 (9b)
Since
~58]  ox 1.2
\ 11)5’ = —25—-11-8=6=%0mod 17

Equation (9) has a solution. To obtain the solution, multi-
ply Eq. (92) by 11 and Eq. (9b) by 5, then

—55¢, + .88 = 36
5501 + 0';.25 — —5

The solutions of above equations are

o 7“‘1—_185 —3¢117'=-—8+14=9 mod 17
and
01:_%_65 (—8)=2mod 17

Equation (8) becomes

Ej+2 - 2E]'+1 + gE] =0 fOl' ] > 2 (10)

From Eq. (10), one gets the rest of the transform I; of

the error pattern, i.e.,

E,=92E, — 9E, = 2(1) 9(—1)==11mod 17
E. = 2E; — 9E; =2(11) — 9(1) = 13 mod 17
Eq = 2E: — 9E, = 2(13) — 9(11) = 12mod 17
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The inverse transform over GF(2# + 1) of the E; is

en=(8)"Y
2

= (—2)(E,2° + E2 + E2% + E, 29 +
4 B2 + E270n 4 E,277)

-

E2-nF for0<n<7

I
>

E2-

= (—2)(12+2° + 9+ 27 + 1222 4 11-2n
16275 - 120 4 11+ 2700 + 13- 2-™)

Using the FFT algorithm, we have finally

(e(la €1, €2, €3,€4, €5, €, 67) = (0) 07 14) 09 07 15> 03 O)

The corrected codeword is
f(x) = R(x) — e(x)
=(5,2,9,1521,21)
—{0,0,14,0,0,15,0,0)
=(5,2,12,15,2,3,2,1)

IV. A Fast Transform Over GF(F,) for the
Nonsystematic Reed-Solomon Codes

The transform over finite field GF(g), where g is a
prime, can be also used to decode nonsystematic Reed-
Solomon codes. The nonsystematic Reed-Solomon code is
defined in Ref. 5. Let aeGF(q) be an element of order N
Consider the information polynomial I(x) with coeffi-
cients eGF(q), i.e

I(x) =i + iyx + oo, + dggxi?

The transmitted code word is the following polynomial:

flx) = I(a’) I (T e

=F,+Fx+ Fx*+4+ -, + Fy x¥

+ IaY)x + I{a2)x* +

where the I(a!) are obtained by using the transtorm over
GFE(F,). That is,

N

Fr= Y in(a®)"

n=u

I{oF) = for K=0,1,2,---,N—1

where
iN—l —_ 0

i’O = iOJiI =1y “.51:1(—1 = iK*l;iK = 0>iK+1 = 0> )
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The inverse transform over GF(q) of Fx is

o1
iy = (N)' D Fra™

= (N)f(o")

1t follows that

forn=0,1--- N—1

<N>“]f(0'_n) = in fOl' n = O, 1, sy K —_ 1
=0 forn=K, - N—1

Suppose the received word in the transform domain is
y(x) = f(x) + elx)
N-1
=f(x) + 3 el
j=0

where e(x) is the transform of the error pattern. Then, the
inverse transform of y(x) is

Sn — (N)—) 2 Y/.'G—Kn

K0

= (N)™ ;f_‘l —fra k4 (N /ié (Z.: ejaj”> a -k
= (N)"fla™) + e,
or

S, =i, +e, forn=40,1,---, K—1

=0+e, forn=K -+ N—1
Thus, the syndrome is
S, =en forn=KK+1,--,N—1 (11

Hence t = (N — K)/2 errors in N-tuple can be corrected
in the nonsystematic RS code. By the same procedure,
used in the derivation of Eq. (5), one gets

S;\Lj - (T‘S,\'_]‘Vl + o 4 O';<_l)tsl\uj,{ =0 (12)
forl1 <j<t

and

En-j — 0‘16;\'_]'/_1 + ot (_l)tote_v_j_f =0 (13)
forj >t

Using the Berlekamp’s algorithm, o; can be computed for
the syndromes. The error pattern can be obtained by
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using Eq. (13). We see that a fast transform over GF(q)
for the nonsystematic RS code can be implemented by
using only one inverse transform. However, encoding is
accomplished by a forward transform. Hence for the
nonsystematic RS codes the FFT over GF(F,) is both to
encode and to decode the codes.

V. A Transform Decoder Over the Finite Field,
GF(K-2"+ 1)

In the previous section, transforms over the field of
type Ir,(*2) were defined to decode RS code. However,
Fermat primes existed only for n <4, and the lengths
and dynamic ranges of the transforms associated with
these primes were often severely limited. Also it was found
that a word length, 4m could not always be represented
adequately in GF(F,). To alleviate such difficulties an-
other approach was proposed recently (Refs. 16 and 17).
High-speed number theoretic transforms were defined on
the Galois field GF{(q), where the prime ¢ was of form
q = KX 2"+ 1, where n and K are integers.

In Ref. 16, an FFT algorithm over GF(q) was utilized
to realize transforms of integers. Such transforms offer
a substantial variety of possible transform lengths and
dynamic ranges. However, the arithmetic needed was
often somewhat more extensive than required for the
Fermat primes.

If g is a prime of the form K+.2" + 1, by Eqgs. (2a) and
(2b), a transform can be defined on GF(K X 2" + 1). The
order of the multiplicative group with generator of GF(q)
is given by

t=q—1=K-2"

Since t has the factor 2" the usual radix-2 FFT algorithm
can be utilized to calculate the transform of as many as
d = 2" points. If d = 2" 1 < m < n and « is the primitive
element of GF(q), then the generator of G, is evidently
y = a®". Primes of the form K-2" 4+ 1 can be found in
the table of Ref. 23, Thus primes of the form K-2* + 1
can be chosen to fit into the word lengths of different

digital computers.

To fit a transform defined by Eq. (2a) in the PDP-10
computer, which has a word length of 36 bits, the largest
prime number of the form K X 2* + 1 was found to be
the prime 45 X 22° + 1. By Fermat’s theorem, 2 ** =
mod q, where g =45 X 22 +- 1. This is equivalent to
(29)*" =1 mod q. It can be verified by a computer pro-
gram that (2¢°)*" = —1 mod ¢. Thus, by theorem 1 of
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Ref. 12, 2% ==8589933136 mod q is an element of order
225 where q = 45 X 22 + 1. It follows that y==24-2""
mod g is an element of order 2% where 0 < K < 28. A de-
tailed discussion for finding the index or order of an
element modulo a prime of form K+2* + 1 can be found
in Ref. 16.

Multiplication modulo of the prime number
q =45 X 22 + 1 is straightforwardly performed in as-
sembly language software in the PDP-10 computer. To
perform addition modulo g, let A+ C =A + (C —gq),
where (C — q) < 0. Then if A + (C — q) <0, the addi-
tion is accomplished by the add command, otherwise it
equals A + (C — g) + q. Another method for perform-
ing addition modulo K-2" + 1 was developed for small
K in Ref. 16.

Subtraction modulo ¢q, if A — C <0, is accomplished
by the subtract command; otherwise, it equals A —C +gq.
For a more detailed discussion for implementing the
transform over GF(45 X 22 - 1) in software, see Ref. 17.
It was shown (Ref. 17) that the arithmetic used to per-
form this transform requires dlog d integer multiplica-
tions mod ¢ and dlog d integer additions mod gq. Hence,
using the same procedure described in the previous sec-
tion, a transform over GF(q) where g = K+2* + 1 can
be used to decode a very long RS code with improved
symbol range.

VI. A Transform Decoder Over GF(g?)
Where q is a Mersenne Prime

In the previous sections, transforms were defined in
GF(K X 2" 4-1). In this section, a transform is defined on
GF(g?) where g is a Mersenne Prime. It will be shown
that the radix-8 FFT over GF(g*) can be used to decode
very long RS code with a goodly number of symbols. Of

special interest is the radix-8 FFT algorithm over GF(g*).

In Ref. 12, Reed and Truong extended previous trans-
forms of Rader (Ref. 7) by developing a Fourier-like
transform over the Galois field GF(g?), a finite field of g*
elements, where ¢ is a prime, of the form

d-1
AI\ = Z an"/k”

n 0

for0<K<d—1 (14a)

In Eq. (14a) the transform length, d, divides
g*> — 1,a,6GF(g?) and v is a primitive dth root of unity
that generates the d-element cyclic subgroup

Gd = {-/"\/2’ “.77d~1:1}
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in the multiplicative subgroup of GF(q?). The inverse
transform of Eq. (14a) is

d-1

ay = (d)—l ZAK_YJ\');L

koo

for0<m<d—1 (14b)

where (d)* denotes the multiplicative inverse of the resi-
due of d modulo g in GF(g?).

It is shown in Eq. 12 that if ¢ is a Mersenne prime of
the form

g=2—1 for p=2.8,5,7,13,17,19,31, 61,127, ---

then the polynomial
p(x) =x* +1

is always irreducible in GF(q), a finite field of g elements.
Since every irreducible quadratic polynomial over GF(q)
must split over GF(g?) (Ref. 24), the existence of a roott"
of the polynomial

px) =x2+1=0

is guaranteed in the extension field GF(g?). Hence GF(q?)
can be constructed as the set

GF(q?) = {a +ib|a, beGF(q))

Furthermore, since the mapping from the complex inte-
ger field C compdsed of the set

- A —1 1
C:{a—#iﬁ[a,,@integersand*q9 gu,/ggqo }

where T= /=1, to GF(q?) is one-to-onc and onto, cir-
cular convolutions of complex integers can be performed
either in C or in GF(g®). It is also shown in Ref. 12 that
FFTs of as many as 27! points can be carried out in
GF(q?).

It was shown (Ref. 14) that the arithmetic operations
for performing the transform pair, Egs. (14a) and (14b),
in GF(g?) requires only modulo ¢ additions, modulo g
multiplications, circular shifts of a p-bit register, and
complement operations. Also because of the symmetry
properties of the dth roots of unity in GF(g*), where d
divides 27! algorithms analogous to the conventional
twiddle factor FFT algorithms can be used to compute
transforms over GF(q?).
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It was shown (Ref. 14) that when d divides 27, the
components of y*/% where y is a primitive dth root of
unity in GF(g*) and k is an odd integer, are fixed powers
of 2. As a consequence, complex multiplications involving
v*%% can be accomplished merely by additions and cir-
cular shifts of (p — 1)/2 bits in a p-bit register. Therefore,
these new FFT algorithms can be made faster and
simpler than the conventional FFT algorithm. Of par-
ticular interest is a new radix-8 FFT algorithm that
requires no multiplications at all when evaluating the
set of 8-point discrete Fourier transforms (DFTs) before
referencing with the twiddle factor. Hence, using a pro-
cedure similar to that discussed in Section 3, a radix-8 FFT
over GF(g?) can be developed to decode RS code of as
many as 2% symbols.

Observe that the clement ¢ = a + i in GF (g?) can be
used to represent two symbols a, b in GF(g). Thus, the
transform over GF(g?) can be used to decode a 27+*-tuple
in GF(q) RS code. By theorem 1 of Ref. 14, we know
that an 8th root of unity in GF(g?) is +=2#-V/2 (1 + 9. If
special interconnections are made between the inputs
and outputs of the p-bit register, the (p — 1)/2-bit cir-
cular shift could be performed readily in one clock time.
This fact makes possible an 8-point FFT over GF(g?),
which requires only circular shifts and additions. This
FFT over GF(g*) can be used to decode a special 4-error
correcting 16-tuple RS code faster and simpler than any
other code of comparable error correcting capability.

The flow chart (Fig. 1) illustrates transform decoding
over GF(g?) for correcting this RS code.

Example: Let GF(g*) = {a +,1'\b|a, beGF(q)} be a Galois
field, where ¢ = 2¢ — 1 = 7. The information symbols are
the 4-tuple (1 +/i? 1+ 2,1'\, 2475 1 —%-/1'\0). Encode this
4-tuple into an 8-tuple by using the FET.over GF(q?).
This code corrects at most two-symbol errors.
A 7

From Ref. 14, o =2@/2(1 +4) = 20-0/2 (1 +4) =

2(1 + 1) is an element of order 8. That is,

A
a=2(1+ i)
= 21+ =T
A N\ N
at =21 +77) = 2(—1 +9)
at= —1
ad = 2(—1—1)
s ~
o = i

N N

i+ =20 -9

Il
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The information polynomial is
E(x) = iy + 132 + i,x% 4 i53° + d,2* + $x° + 528 + a7
~ ~ A ~ ~
= ((1 +14), (L + 2i),(2 +14),( +10), (0 + 0),
(0 -+ 70), (0 + 70), (0 + 7))

Encoding is performed by taking the FFT over GF(T?) of i,,
That is,

8-1
Fr= Z i

n=0
A A A

= (1 +9) + (1 + 2ok + (2 + Dazk + (1 +50)a2k
this implies

f(x) = Fo+ Fix + Fix? + Fox® + Foxt + Fa® + Fox® + Fox®
= ((5+40), 3+ 40), 4, (—2 D, 1, (44 80),1, (- 1)

Suppose the received word associated with two errors is

Y(X) = yo T yiX + y2x® + ysx® + yax* + yx® + yex® + yixT
A N A ~

= (147, (3 +40),4,(—2—9), L, @ +3), L, (<5 —1))

=f,+e,

A A

= (5+40), 3 +4i),4, (—2-1), 1, 4+ %), 1, (—T— 1))

+ ((—4 — 51),0,0,0,0,(—2 —3),0,0)

The inverse transform over GF(q?) of vy, is defined as

81
yka—nl\' — Z ‘)/K(l_”}(
K=0 K-0

Using the FFT algorithm, one gets,

Se =2+ 47
Sy =—4—35i
S, = —3
Se=2+51

S,=e, = ~2-—%

S; =e; = —3—1
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Substituting S; for i = 4,5,6,7 in Eq. (12), yields From Eg. (13),

0:S. — 525, = S, s = (—1 + e — (5 + e, for j = 6,7,8,9

018 — 0285 = §; It follows that

Since
€y = 01€; — 0265
S, —S = (—14%)(—2+8) —(5+2)(—3+ %
S L g yss, i X )
Se —S; =1+ 3¢
A A A

= — (=8 =92 + (=2 — %)(—3 + &)

€, = 01€) — 02€;

=2+ 3i70 = (—1+ 2)(1 + 81) — (—2 + 2i)(—2 + 3)
Eq. (15) has a solution. Thus =2+
€y = 0161 — 026y
— 8655 + 8.5; A N /2 )
T = (—1+ )2+ %) — (—2+ DA +
£ A A A =2-2
= (=83+2i)(—3—i)+(—2—2i)(—-2+3i)
2 -+ 3? €, = 0,6, — 020,
7\ A A N ~
_ -1+ = (—1+ 22 =1 — (=2 + )2 + &)
A
243 = —9+1
.8, —S¢ —3-—97
oy = — = Y .
Sz —§.,S. o+ g Hence the error pattern is
To find the inverse element (a + ib) of (2 + 3i) in GF(7?) e =1+ 3i
A e, =2+ 2
(2 + 3i)(a + ib)=1mod 7 e,=9 -7
~
which implies es = 1—2
e, = —2— 2?
2a — 3b=1mod 7 (16) ~
e; = —3—7
2b + 3a=0mod 7 0y = —3 1+ 9
AN\
The solutions of Eq. (16) are e, = —2+3i
a= —2 Since S, = i, + e,, the corrected code is
b=3 =38, — e,
Thus, — (2445, —4-531—8,2+5 —2— %

A

~ o 2 o
(2+3i)'1=(—2+,i\3) —3~—i —3+2i, —2+8i) — (L + 342

+oho -0 —2%+1, —2-9 -8 -%

Hence ~3 + 21, —2 + 3i)
“\ N o A A ~
oy = (—Li)(2 4 8i)t = —1+ 2 —(1+01+2%2+51+000+70, 0+,
o =(—3— @+ 3 =5+2F 0+ 70,0 + )
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Appendix

A Method for Determining Octadic Residue and Octadic Nonresidues of a Prime

To define the field of type Ir, (°/2), it is necessary to
determine whether 2 is either an octadic residue or an
octadic nonresidue of F,. Towards this end, the follow-
ing definition and theorems are needed.

Definition. Suppose m is an integer and ¢ is a prime
such that (m, q) = 1. Let [m/q], be the Gauss-Legendre
symbol. Then [m/q]." is the symbol, defined by

if X*"==m mod g has an integer
solution in GF(q)

if X*=m mod g has not an in-
teger solution in GF(q) for which
[m/q],. .= 1

Theorem 1. Let ¢ = a* + b*> = 4n + 1 be a prime for a
odd and b even. If [2/q]. = 1, then [2/q], = (—1)"*.

Theorem 2. Let g =a*>+b*=8n+ 1 be a prime, a
odd and b even. If [2/q], = 1, then

2
[7] = (—1)¥® if n is even
8

= (—1)trm if nis odd

For the proof of these two theorems, see Ref. 20.

Let g be a Fermat prime, ie, F, =22 + 1 = 4.9
+1=02""P+1=a+b*for n=12234.

By Theorem 1,

Also by theorem 2,

+=+1forn=234

forn =34

Thus, 2 is an octadic residue modulo F, for n = 3, 4.
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!

DO THE INVERSE TRANSFORM OVER GF (q 2)
OF RECEIVED WORD TO OBTAIN SYNDROME, S

YES
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NO ERROR
YES
STOP
TWO ERRORS OCCUR
. "5655 + S4S7
ey Jowey
ONE ERROR 5 4°6
OCCURS )
S6 . 5557 - 56
% i
H S7 S5 + 5456

COMPUTATION OF
ERROR PATTERN
. FROM ol +2 "

FOR] =6, 7, 8,9

lT.l .J.+]

COMPUTATION OF ERROR
PATTERN e FROM

o]+2- Ul.]+lb- 0-21

i

i, =S, ~e,

1 i

STOP

Fig. 1. Transform over GF (g*) encoder and decoder for correcting at most 2 errors of

8-tuple RS code
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